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1. Introcduction.

Much work has been done recently in the area of the superposition
of independent stationary point processes, extending earlier results
summarized in Cox &nd Lewis (1966, Ch. 8) and Cinlar (1972). Various
approaches have been utilized in deriving the probabilistic properties
of the svperposition process, including the development of expressions
for the description of counts of events occurring in some interval and
for ‘he description of the properties of intervals between events
starting at an "arbitrary" event. Following Lawrence (1971) we call
these the synchronous intervals of the process.

The present paper considers the problem of describing the second~-
order joint mcment structure of the synchronous intervals for the special
case of the superposition of identical Erlang renewal processes.

Notationally, let p be the number of component processes to
bYe superposed and let each component process be an Erlang renewal »ro-
cess, i.e. have ind-pendently distributed intervals between events, each
interval having the same Erlang probability demnsity function

k k-1 -kx/u
g(x) = (%) e (x 2 0). (1.1)

The superposition of p of these “ndependent processes gives the super-
posed process to be studied. We use the description "Erlang process
rather than "Gamma process' to indicate that the shape paremeter k
ia (1.1) 18 a. integer.

Downton (1972) considered the p-oblem of deriving the distribu-

tions of synchronous intervals in this superposition process and utilized




both an imbedded Markov property and an integral eguation approach to
aevelop limiting forms for the distributions, i.e. for large timess of
observation and large numbers of superpositions. Downton was concerned
with applications to reliability studies; note that the superposed
process is the overall failure pattern for a system consistin;; of p
renevable components operating in series, i.e. the system fails whenuver
& component fails and is renewed.

Lawrance (1973), amongst other things, extended Downtons results
and showed that the synchronous intervals between events in the super-
posed process are correlated. He caiculated the first two serial
correlation coefficients for sperific cases of superposed Erlang renewal
processes, and cbtained joint and univariate distributions of synchronous
intervals.

Barnett (1970) used simulation to investigate some of the
correlational properties of superposzd processes in the sre:ific area
of "studying the supply pattern of goods de.ivered to a supply depot
by a fleet of vehicles." His processes mey be ~onsidered to h»e kylang
processes with large values of k.

Here we deveisp erumewhat more gene.al expressions than those
given previously for the serial correlations and the spectrum of syn-
chroncus intervals 11 sup rposed Erlang renewal processes. Specific
forms fur the specta are given for a few cases., A general expression
for th: generating function of cvhe distribution of counts is used to compute
the spectruia of intervals and rerial correlations in other cases. Some general
conclusions about the shape o® the spectrum of the intervals in the super-

posed process are given; chesc utilize results of Enns (1970) to the



effect that if intervals in the component pr:cesses have increasing
failure rates (decreasing faillure rates), then so do the marginal syn-
chronous intervals in the superposed process. Enns (1970) also discussed
serial correlations and tried to relate it to the properties of the

failure rates of the intervals in the cumponent processes.



2. Preliminaries.

Cox and Lewis (1966, Ch. 4) used the fundamental identity of

point processes,
(N(t) < k) » (Sk > t) (k = 1,2,...) (2.1)

and Palm-Khinchine formulae to relate the generating funciion of the
asynchronous counts, ¢(g,t) = E{EN(t)}, to the spectrum of synchronous
intervals {xi} in a stationary point prccess. The development leans

heavily on Laplace transforms; for (1.l) we have

= k
g(x)e ™ dx = (—ng—a (Re(s) 2 0)

g(s) = gtk/u

oO'Y—— 8

= e+ %, (2.2)

which is a rational function in s.
Note that the parametrization for (2.2) gives an expected value
of u; the intervals X can be construed to be the sum of k independ-
ent exponentially distributed variables, each with mean yu/k = 8.
Denoting the Laplace transform of the generating function for
counts in an interval (0,t] following an arbitrary event (synchronous

case) in the point process by Qf(E;s), we have for a renewal process

(Cox, 1962, p. 37)

*
* oy o l=g (8)

This expreasion is simple looking but in general difficult to inmvert.
Using ¢;(5,8) the Palm-Khinchine formulae (Cox and Lewis, 1966, Ch. &)

give the Laplace transform 0*(5;5) of the generating function for the




number of events in (x,x+t), where x 1is an arbitrary time in a
stationary process (i.e. the asynchronous case). The relationship is

(Cox and Lewis, 1566, Ch. 4, p. 68)
¢ = La 2L ), (2.4)

If p renewal processes are superposed, we need to develop a general

expression for the tranaform of the generating function of the asyn-
»

chronous counts in the superposed process, denoted by ¢ (p)(E;s).

This 18 because the spectrum can be obtained as (Cox and wc wis, 1966,

p. 717)

£, (w) =142 1 o, cos(kw)}

+ ® k

k=1
# =
- l_iﬁ(ei“;0+) + 0*(g 1m;0+) (2.5)
n 2¢*(0,0+) - v ’ *

where the pk's are the serial correlation coefficients for synchronous

intervals k lags apart, i.e. corr{X, X and the denominator 1is

wchs
vat(xi)/E(Xi) - var(xi)/u.

In principle it is easy, in the case of superposition of p
identical processes, to obtain Q*(p)(E;a) or 0*(P)(£;t), since in
the time domain

(p) N, (t)+...+N_(¢)
o @) = et ) g ! P

) Ni(t)
= n E{g }
i=1

= (¢(E;0))P. (2.6)



*
However, if ¢ (£;8) 1s known, as for the renewal process, to obtain
*
) (p)(E;s) it 18 necessary to perform the operations (using 2.6)

1

¢*(€;8) L $(E;t) + 0(p)(E;t) L 4*(P)(5:r;,

where L-1 denotes inverse Laplsce transformation and L a Laplace
transform. Obviously the procedure would be cumbersome for large p,
even 1if ¢*(E;s) could be inverted to give ¢(E;t).

Section 4 of this paper 18 concerned with the development of
¢(p)(6;t) or its transform in the special case of the superposition
of independent, identical Erlang renewal processes, while Section 5
develops the spectral density, f+(w) for the superposed process.

Section 6 gives specific functional forms for f+(m) and the

pk's in the cases of Lk = 2 .and P = 2,3,4; the results are surpris-~
ingly simple. In Section 7 c;mputational results for f+(w) are given,
using the general results of Section 5, for k = 2,3 and p = 2,3,...,9.
These illustrate the general form of the spectrum of the superposed pro-
cess. Some results for =uperpositions of non-identical Erlang processes
are also given, corresponding to cases discussed by Lawrence (1973).

In Section 3 we review some results of Enns (1970) and show how
they can be used to derive some properties of the spectrum of superposed
renewal processes, not necessarily Erlang. All the results are used in

Section 8 in the discussion of the general shape of the spectrum of

intervals of superposed Erlang renewal processes.



3. Enn's results and the init‘al point on the spectrum.

It 18 clear that the marginal time between events in a stationary

superpored process x(p) will have mean
ex?) - 2/p,

where E(X) 1is the common mead time between events in the p component
processes, Let the spectral density (2.5) of the synchronous intervals
in the superposition process be denoted by fip)(w) and the coefficient
of variation squared by czgx(p)) = var(x(p))/{E(X(p)}z. Then we have
the following relationship between the asymptotic slcpe of the variance
time curve V(p)(t) - var{N(p)(t)} and the initial point on the

spectrum (Cox and Lewis, 1966, p. 78):

(p) 2x(P)
v (e) | C2X ) () oy, (3.1)
dt gx®)

lim

too
Now V(p)(t) = pV(t), where V(t) 1is the variance time curve for the
component processes, and if the compon<nt processes are renewal pro-

cesses 1t is well known (see Cox and Lewis, 1966, p. 31) that

dv(t) _ c2(x)
dt E(X) °

lim V'(t) = lim

e | B

Putting these results together we get, for superposed venewal prucesses,

"(cn (P)
an -y LOAED)
T C (X*4)

p C2(X) E(X) L 6@
| E(X) X P CZ(X(P)) p CZ(x-(P)) (3.2)

There are two consequences of this result.



Enns (1970) showed that 1f X has an increasing hazard rate
distribution (IMR), then so does x(“), and 1f X has a decreasing
failure rate distribution (DFR), so does x(P). Thus, using results

of Barlow and Proschan (1964) we have that
c‘l(x(")) £1 4f X 4s IHR,
c2x®) 21 1f x 1s DR.

Consequently

1 c2(x)
'cz(x(p))zf_’_ (0+) 2 m if X is IHR,

N S < f(p) (0+) < m if X 1is DHR.
- CZ(X(P)) + L

Note that for the Erlang density function (1.1), X 48 IHR if k> 1
and DFR 1f k <1, and C2(X) = %u When k = 1 w= have an exponential
density and a Poisson process for the compununt processes and the super-
position process; the spectrum then has the constant value 1/% and
£0r) = £2(04) = 2 /x = /.

The second consequence of (3.2) is that in the limit as p + =,
when the superposed process goes to a Polsson process and C (x(p)) +1,

the spectrum of intervals is tied down at w = O:

2
mie £ (o) - &K
p-’ﬂ
For the Eriang process this value is 1/(wk). Thus the spectrum, which
is converging to the flat spectrum of the limiting i'oisson process, has

a "notch" in it at ® near zero. This notch corresponds to the fact

that if we could observe a superposed process well past the mean of




iotervals in the component processes, the varisnce tima curve would not
be uqu;i to ;}z(ii. 1.e. would depart from linearity. In othex words
low frequency effects a.d long tims effects correspond.

It s not kmown 1f £P(04) goes munotonically from .1/v at
p=1 to 1/(vk) as p + o, Computational results are given in
Section 7. It would alsc be interesting to know the derivative of

fip)(u) at o = O+,
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4. Genersl results for the generating function for an Erlang renewal
Pprocess. AR LK i : '
For the Erlang renewal process, using (2.2) and (2.3) and letting
A= k/y =1/B, we have

Ak
1-(m)

s{l - 5(-1%?)}

0;(5;8)--

= (A"’S)k - lk , (l’.l)

s (H-s)k - Ak}

Hence, uesiny, (2.4),

k

k
ey e Lo ACE=1) . (48) -2
v = L+ HE s{O+8)* - 025

k

Giarn® - 0 + A are* -2k “n
ate)® - 0k | -
- P(8)
ae) * ‘ (4.3)
where P(s) and Q(s) are polynomials in s.
By expanding and collecting terms in P(s) one finds that
p(s) = 2 (o) + &L (o(s) + 2%(e-1)) 4.4)
= ‘0 + ale + azuz + ... + ak_zsk-z + ak_llk-l,

so that P(s) is a proper polynomial in s of order k - i, with

k-1 k-1
8, =2 Tk + G-

- 2L+ ) D)

5




R S S R T T L I D

11
ap = AILRUED 0 4 e 53,
| i} =1
.k_z A{k + k } »
%1 = 1
The first derivative of Q(s) with respect to s 1is
Q' (s) = kO+a)*L, (4.5)

Now let {11,...,tk} be the k distinct, complex-valued roots of

g, 1l.e.,

T? - f g=1,...,k).

The roots sj of Q(s), 1i.e. Q(sj) = 0, are clearly

‘j = X(tj-l) (3 =1,2,...,k), (4.6)

and these too, like < are distinct and complex valued.

j'
We are now in a position to use & standard inversion formula

(Gardner ani Barnes, 1942, p. 338), for the ratio of two polynomials

wvhen the denominator hae distinct roots:
L1 Es) oL Z —-.—-1-—

We note that from (4.4) and (4.6)

Ak -1

P(.)'_( )2 (j-lw'-ok):
Lol

3

and from (4.5)

k1
ylaB_ & gan,... 0. 4.7

Q'(aj) » k(k+sj rj
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Consequenily, the probability ;funeruiﬁé "function for the asynchronous

number of counts, N(t), in an Erlang renswal process is

o (50) = L (@500}

k P(s,) s,t
- _'..‘l. h|
th Ty *

€-p2 & Ty ADe
- k : jzl (rj-l)‘s ¢ j ’ (‘.'8)

We note too that the expansion for the variance~time curve of an
Erlang renewal process obtained by Serfling (7770) is obtainable from
(4.8).
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5. General Results for the Spectrum of Counts for Pooled Ind~pendent -

Erlsng Receval Processes.

We consider here the case in which each of the p component
Erlang rencwsl process have the same scale parameter A and shape
parameter k. The probability generating function for counts in the

poo’ed process starting at an arbitrary time is, frcm (2.6),
o ig,0) = Lace, 0P,

Let J = {jl,jz,...,jp}, be an index set. Using the result (4.8) from

Section 4,

k 1 X(tj-l)t}p

(» ~1)2
WDieo G0 | e

3=
Al ] (r-D}:
. p k k T k|
PR A T
) oam gmle

Taking the Laplace transform of ¢(p)(€,t) we have

T

K x| ! @D

-1y2({P T,~

Ve - {%‘?‘} 3 Z1 Ty z1 lei IJ G-
1 L G T~ B

We note the following in (?2.5):

v
€Y [ £, (w)dw § 1,
0

(11) the denominator in the second expression of (2.5) for £+(w)

is conatant with respect to w.

(5.1)

(5.2)




Conscquently, 1if ve can evaluate '4"'“”(."".%) + 0.(9)(0"“;00-) for

0 £wxw¥, andintegrate it, thean (1) will give us the value of

»{2¢ “”(o 0+) - E(X)}). Thus ve will have f(p) (@) for O s “w s ",

and also’ var(x(p)) Now wvhen s = O+, | .
T
*(p) B YL L k }ygy TIE
FPon - LG | L] .6
3 jp'l jéJ (l-tj)

We are interested in the cases £ = em and § = e-m. We note that

-1)2 5
15-5-1-2—-5-24-51. (5.4)
Thus,
-1}2 -1)2 - .
&=n° mus—]—')— _m-em-2+em--2(l-coew).
E E-a E E-e
Recall that < 3 is a kth root of E. VWe will now use the
notation
‘l'j =g kth root of e“,
'rj' = g kth root of e ¥,
In particullat we assign indices to these roots in the following manner:
Ty - ep(13E®)), 5 -1,k (5.5)
'tj' - exp{-i(-z—'-im)}. j=1,...,k. (5.6) -
-1
Thus, ‘l’j' - ‘tj 3 %

gg
.
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Taking real and imsginary parts,

Re(s,) = Re(r,') = con(-zm) . (5.8)
b 3 k
I('rj) - -I(rj') ~ lin(H{-m) . (5.9)
Be ause ‘tJ' - T e we see that
T 1 t,"'
(r,-1)? - TR (r,"-D)? ’
Thus, for any index met J,
1w L e L~
se1 7 jer 7y 1616, - 2+ L

1
= .
J&J -2 l-coe(Z_"lJ‘ﬂ.) }

/

We now consider the terums 1/2(1-15) and 1/2(1“Tj')

‘1n (5.3) when £ 1s replaced by % ind o respectively.

() . .
Qa ) {1-Re(t,)} -1 1(z,)
b JEJ J jéa J

: {1-Re{t )}+ 1 I(t,)
; 152.1 J iég J , (5.11)
) {1-Re(r,)} -1 ) I(tj)ll?
1€ 1€

(1)

1 . 1
) (1) ¥ (1-Re(r,"3} - 1 ) I(ry")
i€ 1€J 4€3
] (1Re(x}+ 1 ] I(x)M)

1} {l—Re('rj')} -1 7 I(rj'>||2
jes j€I
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) {l—Re(tJ)}-i 1 I(‘tj)
B — &t , (5.12)
T {l—Rc(rj)} -1 7 I{tj)llz

jg je&J

i Thus, for uny index set J,

1 . . 22:jb7 .
) (1-7,) ) (1-t,") &5 J
jeJ jel

(5.13)

where

a, = J {1-Re(t))}
T 6 :
« ] {1-cos(3nltw);,
and & .
b, = § I(r)
Y R
- ] sin(3Elty)
jeJ

Let

c; = 1 {l-con(g—'e‘(-h—")} . (5.14)
[

Gathering results (5.3), (5.4), (5.10), (5.13) and (5.14) we have
£P) () ~ 4" P (00 4 ¢1 P 0

k k ZaJ

1 P
= —%— (l-cos w) cese . (5.15)
7 .-co 1121 Jpzl (ansz)cJ

L bJ and cy depend only on the indices in J and

not on their order, the number of distinct terms to be computed for each

Because a

P

godiir
47

T,
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value of w 1s equal to (H';'l], the figurate number foxr k types
of objects taken in sets of size p. The computation time for a,

b, and ¢ 3 is proportional to p, so total computation time should

J
be approximately proportional to p times the figurate number.

A FORTRAN program was written to compute f‘f_p) (w) at intervals
of 0.05x. Various values of k and p having figurate numbers no
greater than 56 were used. Computing times were less than 2 seconds
per run on the IBM 360/67 computer. Some results of the computations

will be shown in Section 7., First we cbtain some specific results

for small p and k.
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6. . Specific results for k= 2 and p = 2,3.4.
The ganerating function 0(?)(C;t) for the superposition of »p

identical -Erlavg renewal processes is analytically tractable for k = 2

and small 'p,
From (4.8), with a = -A(1+€2/2) and b = -2 (1=63), we

obtain

$E0 = 7 -a-eH2 2t argl/BHz L (6u)
E ! :

By taking {¢(E;t)}p ve obtain the generating functions for the

superpositions of p such Erlang renewal processes.
(i) For the case p = 2, we have

01 = 4D 0 - e (at/BHy 2o
1/2)2 bt

+ (1+¢

whose Laplace transform is

1/2
¢*(2) (533) = 1 {(1"5 )J’_'_ (1+E

1/2,, o
) 2(1-¢)
165 - } . (6-3)

'8 - 2a s - 2b s-a~b

From (6.3) we can obtain the spectrum of intervals using (2.5). The

result is
ﬁ£2)(m) = %'(1 - 59%-33 0Lws=s7w. (..4)

From (2.5) we have immediately that G -1/10, =0 for k> 1,

"
and the spectrum is that of a first order moving average process. This
yeneralizes results of Lawrance (1973), who gave Py " -1/10, but no

higher correlations.

- 201-6)2 (8DIT) (g 9y
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(11) For p = 3 the generating function of the counting function of

the superposition process is

‘(3)(E;t) - .(:_T}_z;_ {_(1_£1/2)6 83‘t + 3(1'51/2)2(1-5)2 e(Z“HI)t
13

- 3+ B2(1-g)2 BT | (1, 126 Ity (o o

and its transform is

1/2 1/2
L&) PR | f-(l—c )8 L 30-£'920-g)?
¢ (£38) 6453/21 8 - 3a hs 8-2a-b

8 -a4a-2b 8 ~ 3a

_aatBH2a-p? | (1+€1/2)"} . (6.6)

Again using (2.5) we obtain for the spectrum of intervals

25 41 - 9 cos w

fia)(“) .9 %;g; - 48 cos w - 9 cos? w} (O Loss), 6.7)

This is the spectrum of a mixed second-order moving average and
first-order autoregressive process for which the serial correlations
are expressed by .hree constants, since for k > 2 Pt ™ ka.

Equivalently, for k 2 2, b - CBk.
In the present case Py = -0.1044447, Py ™ -.0316033,

Py = -0.0035118, or C = -2.55966 and 8 = 1/9.

(114) Skipping the details, we get for p = 4 the result for the

spectrum

8 ’871 - 502 cos W ~ 57 cos? w - 24 cosd Q} (0£w=w)

(4) v
f-+ () 379!} 17 - 8 cos W

(6.8)
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This 1s the spectrum of mixed third-order movirg average and first-
order autoregressive process, so that the serial correlations may be
expressed by four constants, rince for k > 3,

for k 23, I CBk.

Pt ™ Bpk. Equivalently,

For the case. p = 4, k= 2 we gat

Py = —0.0979540 H
Py = -0.0442821 ;
Py = ~0.0150263 ; C = -.961683 ;
L -0.0037597 ; B8 = 1/4 .

In Figure 1 we show the spectra f_’(_p) (w) for the éuperposit:ion
of independent renewal processes with Erlang (k=2) interval distribu~
tions. The calculations for p = 2,3,4, where p is the number of
processes superimposed, are exact results using (6.4), (6.7) and (6.9)
respectively. The result for p = 5 was obtained from the general
results of Section 5.

Note that the initial points of the spectra seem to be decreas'ng
monotonically with p to the value -(—k]-"—)-, while generally for the

other ®w the spectrum seems to be converging towas~d the flat spectrum

of the Poisson limit, i.e. -’1?
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7. Discussion of Results.

The results (6.4), (6.7) and (6.8) giving a simple structure to
the spectra of the superpused processes for p=2 and k= 2,3 and
4 are at first quite surprising. However, some such structure could .
be anticipated from (5.15) which gives the spectrum fip) () as a
rational function in cos w. It has not besn possible, as yet, to
relate the parametars p and k to the order of the moving average
and autoregressive structure, or to give simple expressions for the
spectrum or serial. correlations. Knowing Lhe order of the structure
of the spectrum would be a help in knowing how many serial correlations
one wou..d have "~ compute from (5.15) for specific p and k. The
correlations are computed by calculating £ +(m) at a sufficiently fine
grid and then inverting the series using a FFT algoritim. (See Cooley,
L. #is, Welch, 1970.)

There are other theoretical questions raised by the results which
will be discussed else'here. Briefly though, Downton (1971) discussed
the possibility of looking at this particular superpcsition process as
a Markovian progression through pk parallel channels, each chaanel
having k stages. This may explain the structure. For p =k = 2 it
is in fact possible to show that the intervals are not only uncorrelated
but independent for lag. greater than 2.

We discuss now the computational results.

In Figure 1 the spectrum .is given for the superposition of Erlang
(k=2) processes for several values of p, the number processes super-
posed. This was discuassed in the previous section. A similar graph
18 given for k = 3 in Figure 2. Again as p iucreases the iritial

point of the spectrum Cecrease 1s converging slowly to the value 1/
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but the remainder of the spectrum which would obtain for all w for
the 1imiting Poisson process.

Figure 3 by contrast has, for fixed number p = 2 of superposed
processes, graphs for different values k. As k increases and the
component processes become more regular with C2(X) decreasing, there
is a larger peak at w, or equivalently at a period of T = 2. Thus
the alternation of intervals induced by the superposition becomes
pronounced in the spectrum of intervals.

In Figure 4 the case p = 3 18 examined for different values
of k. The tripling due to the superposition produces a more and more
marked peak at w = 27/3 (period T = 3) as the component processes
become nore regular.

Formulae such as (5.15) can be developed for non-identical component
process~s. Ta Figures 5, 6 and 7 several cases of the pooling of a
Poisson and Erlangian process are given; the marginal cistributions
were given by Lawrance (1973). These are important as models for the
cagse in which there is one dominant, fairly regular, process corrupting
the superposition of many sparse component processes which sum (almost)
to a Poisson process. Note carefully the vertical scale; departure
from a flat spectrum is small and would be hard to detect iu real data
unless the Gamma process were very regular. The spectrum of counts; would
probably be much more informative in this case.

A short table of computed coefficients of variation of the
marginal intervals X 1in the superposed process is given in Table 1.

These came ovt of the computations of the spectrum.



POOLED ERLANG PROCESSES

Coefficient of Variation
., ¥ K i By
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pe 2 3 4 SF TERARTE 7 8 9
k2 |. .791.] :.833 | .860 279 | 093 | wo0a | o3 T 920

3 .na | 179 | 819 | .sar- | 867 | cd2 | .80 |°

4 | 675 | .75 | .802 | .83

5 | .652 | (740

6 | .637 | .732 ‘

7| .627

8 | .620

9 | .615

TABLE 1
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8. Conclusion.

The fant (Cox and Lewil. 1966, Ch. 8) that the variance~tine
curve and spectrum of countn 1n the lupatponition of identical processes
is a scaled version of the corresponding conponcntl il vety useful if
P 1: known. The crux bf, most annlysin though is that P 1- not known
and must be detetnined. Th. lplcttl of 1ntervals computed hnre shouird
be a vety useful tool 1n helping to detérmine p, and in verifying
aclunptions such as those made in Cox and Lewis (1966, Ch. 8) in

analyzing nerve—pulae data.
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CAPTIONS

Figure 1. Compured spectra of intervals Zo: supurposed Erlang renewal
pracesses (k=2) for several values of p, where p is the number
of independent processes superposed. F¥nr p = 2, 3, and 4 these are
exact results using (6.4), (6.7) and (6.9).

Figure 2. Computed spectra of intervals for supsrposed Erlang renewal
processes (k=3) for several values of p, where p is the number
of indepeadent processes superposad. For all p the results are
obtained from the computational formulae of Section 5.

Figure 3. Here the number p of superposed processes is held fixed at
2, while the parameter k in the pooled Irlang processes is increased.
As k d4ncreases the intervals in the individual processes become more
regular and the peak in the spectrum of the superposition procesg at
w = 7 becomes more pronounced.

Figure 4. Here the number p of superposed processes is held fixed at
3, while the parameter k in the pooled Erlang processes is increased.
As k increases the intervels in the individual processes become more
regular and the peak in the spectrum of the superposition process at
w = 2n/3 becomes more pronounced.

Figure 5. The spectrum of intervals of superposed Poisaon and Erlang
renewal processes is plotted for increaeing values of the parameter k
in the Erlang process. The Poisson and Erlang process mean values are
held constaut.

Figure 6. The spectrum of intervals of superposed Poisson and Erlang
renewal processes is plotted for increasing values of the parameter k
in the Erlang process. The Poisson and Erlang process mean v.ilues are
held constant.

Figure 7. The spectrum of intervals of superposed Poisson and Erlang
renewal processes is plotted for increasing values of the parameter k
in the Erlang process. The Poisson and Erlang process uean values are
held constant.
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